Managing Method Transfer in the **Pharmaceutical Laboratory Arnie Aistars, Ph.D. Consumables Business Develop** ment

Agenda



- USP <621> Chromatography Change Update
 - Taking advantage of the change
 - Examples
- Strategy for Successful Method Transfer
 - Prevention
 - Troubleshooting
 - Sources of Contamination
- Method Transfer Principle
- Summary

USP <621> Chromatography Defines "Allowable Adjustments"

- Adjustments to a USP method may be made to meet system suitability requirements
- Verification tests must be performed after changes
 - Full re-validation not required
- Must use the same L-designation of column
- Isocratic hold or dwell volume adjustments are allowed

USP 37-NF 32 through First Supplement - August 1, 2014

Variable	USP 36-NF 31	USP 37-NF 32 Through first supplement			
		Isocratic	Gradient		
Particle Size	-50%	L/dp Ratio Constant	No changes allowed		
Column Length	±70%	or N: -25 to + 50%	No changes allowed		
Flow Rate	F2=F1 (d2 ² /d1 ²) and ±50%	F2=F1 x[(dc2 ² x dp1)/dc1 ² x dp2)] and ±50%	Not applicable		
Column ID	Any allowed if linear velocity is constant	Any allowed if linear velocity is constant	No changes allowed		
Injection Volume	Any reduction consistent with precision and detection limits; no increase permitted		Can be adjusted as consistent with precision and detection limits		
Column Temperature	±10%	±10%	±10%		
Mobile Phase pH	±0.2 unit	±0.2 unit	±0.2 unit		

Length	Column	Particle Size	Relative Values				
(<i>L</i> , mm)	Diameter (dc , mm)	(<i>dp</i> , μ m)	L/dp	F	N	Pressure	Run Time
250	4.6	10	25,000	0.5	8.0	0.2	3.3
150	4.6	5	30,000	1.0	1.0	1.0	1.0
150	2.1	5	30,000	0.2	1.0	1.0	1.0
100	4.6	3.5	28,600	1.4	1.0	1.9	0.5
100	2.1	3.5	28,600	0.3	1.0	1.9	0.5
75	4.6	2.5	30,000	2.0	1.0	4.0	0.3
75	2.1	2.5	30,000	0.4	1.0	4.0	0.3
50	4.6	1.7	29,400	2.9	1.0	8.5	0.1
50	2.1	1.7	29,400	0.6	1.0	8.5	0.1

For example, if a monograph specifies a 150-mm \times 4.6-mm; 5- μ m column operated at 1.5 mL/min, the same separation may be expected with a 75-mm \times 2.1-mm; 2.5- μ m column operated at 1.5 mL/min \times 0.4 = 0.6 mL/min, along with a pressure increase of about four times and a reduction in run time to about 30% of the original.

■ 1S (USP37

Taking Advantage of 'Allowable Adjustments' in USP <621>

Isocratic Methods	 Improve analysis speed and quality with UPLC and sub-2-μm columns Improve methods with CORTECS 2.7 μm or 2.5 μm XP columns on HPLC systems No re-validation required
Gradient Methods	 Any change requires re-validation Fully optimize methods using sub-2-µm particles and UPLC Develop better methods faster with ACQUITY QDa mass detector
System	- Future-proof the lab: Both HPLC and UPLC methods can be run on the ACQUITY UPLC H-Class system
Software	 ACQUITY Columns Calculator for proper transfers Streamline verification and validation testing with Empower Method Validation Manager

Agenda

- USP <621> Chromatography Change Update
 - Taking advantage of the change
 - Examples
- Strategy for Successful Method Transfer
 - Prevention
 - Troubleshooting
 - Sources of Contamination
- Method Transfer Principle
- Summary

USP Compendial Methods: Potential Issues

Mobile phase

- High buffer salt concentration in mobile phase
- High concentrations of modifiers (phosphoric acid, TEA etc.)
- pH may be close to the limits of traditional column packing materials

Method

Not always an optimized method

Sample

- Complex formulations: tablets, suspensions, ointments
- Minimal, inadequate sample preparation
- New excipients may not be compatible with USP method
- Sample may not be fully soluble in diluent/mobile phase
- Methods (often isocratic) may not elute all sample components

API, related substances, formulation excipients

Strategy for Successful Method Transfer to UPLC

Determine Method Compatibility

Prepare UPLC System & Mobile Phase

Method Transfer and Routine Analysis

Successful Transfer **Prevention**

Determining UPLC Method Compatibility

- Did the separation ever work well on an HPLC system?
 - Check buffer salt solubility with bench top experiment
- Does the HPLC method properly elute ALL excipients as well as the API and related substances?
 - Look at the properties of formulation components and their compatibility with the original USP method
 - Solubility in diluent and mobile phase
 - Stability (temperature, pH)
 - Modifications to sample preparation or method MAY be required, to prevent sample build-up on column

System Preparation and Mobile Phase

System

- Ensure the system has been cleaned regularly
- Sonicate or replace solvent filters to ensure cleanliness
 - Sinkers are significant source of bacteria
- Run a system performance standard to ensure system is in proper working condition

Mobile Phase

- Prepare fresh mobile phase
- Use high quality, branded mobile phase solvents
- Use high purity mobile phase buffers and reagents
- Consider filtering or purchasing pre-filtered mobile phase solvents
- Ensure that the mobile phase pH is compatible with the column

Strategy for Successful Method Transfer

Determine Method Compatibility

Prepare UPLC System & Mobile Phases

Prevention

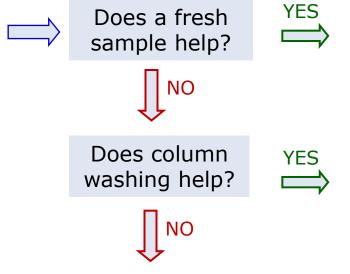
Method Transfer and Routine Analysis

Success

Failure

Troubleshooting

System


Sample

Quick Troubleshooting

Failing chromatography

- Poor peak shape
 - Tailing
 - RT shifts
- Drop in plate count
- System overpressure

Does replacing column inlet/outlet frits help? (for troubleshooting only)

Column Bed Contamination

Sample Stability

-check sample stability

Insufficient Wash

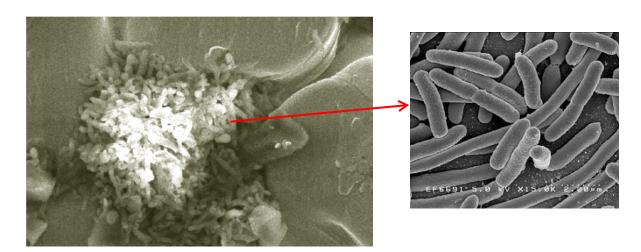
-build a column washing step into each sample set or run

Particulates/Bacteria

-clean system
-replace sinkers
-make fresh mobile phase
-filter mobile phase
-use pre-column filter

-re-examine sample matrix solubility and sample prep

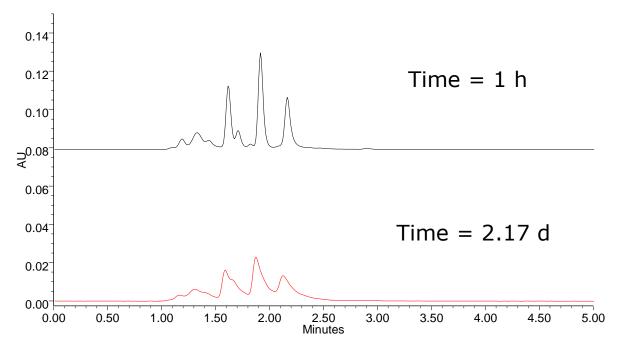
13


©2015 Waters Corporation

YES

Waters THE SCIENCE OF WHAT'S POSSI

Bacterial Contamination


- Bacteria in the system is a common cause of column failure
- Microbial build-up occurs in all systems running aqueous mobile phase
- Does not only occur at neutral pH
- 15 minutes is all it takes when conditions are right

SEM: column inlet frit, inlet side

Effect of Bacterial Contamination on Chromatography

Protein Mix

Column contaminated with bacteria (confirmed by SEM analysis of column frit)

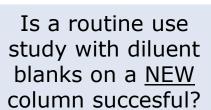
Conditions: 25mM sodium phosphate, 150 mM sodium chloride, pH 6.8, 0.4 mL/min, Injection vol: 4 μ L, Wavelength: 280 nm

Preventing Bacterial Contamination

Tips

- Replace sinkers (high source of bacteria)
- Prepare mobile phase fresh daily
- Pre-mix isocratic mobile phase with organic solvents
- Add starting % organic to aqueous mobile phases and adjust the gradient accordingly
- Flush the system regularly (with column removed) using a series of water/acid/organic washes to eliminate microbial growth.
 - See "Controlling Contamination in UltraPerformance LC®/MS and HPLC/MS Systems" PN 715001307
- Do NOT perform a hot water wash: this will worsen contamination

Column Bed Contamination: Is it from the System or Sample?



Failing chromatography

- Poor peak shapeTailing
 - RT shifts
- Drop in plate count
- System overpressure

Not related to sample stability, washing or particulates

(standard every 20 injections)

Column Bed Contamination

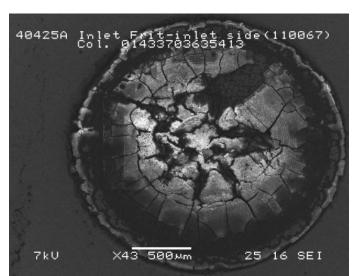
- Clean system
- PM system
- Fresh mobile phase
- New sinkers

System issue

Further investigate system contamination

- Bacteria (less than 0.2 μm)
 - Mobile phase impurities
 - Filter compatibility
- Column stability under method pH and temperature conditions

Preventing System-related Column Bed Contamination



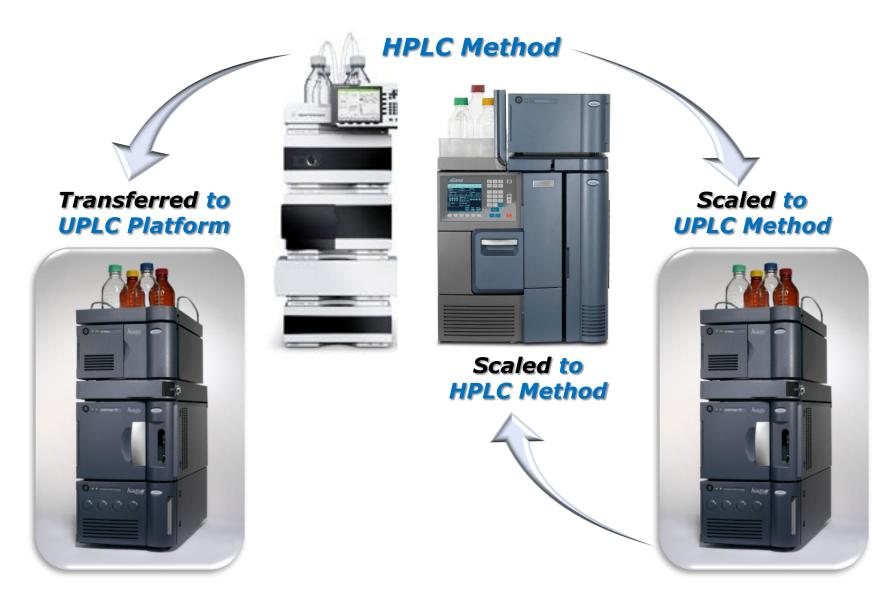
18

Tips

- Prevent bacterial growth in system
- Use high quality, high purity reagents for mobile phase
- Consider using a VanGuard pre-column
- Ensure that the column being used is stable at the pH and temperature specified in the method
- Check chemical compatibility of filters (sample/mobile phase) with the solvents being used

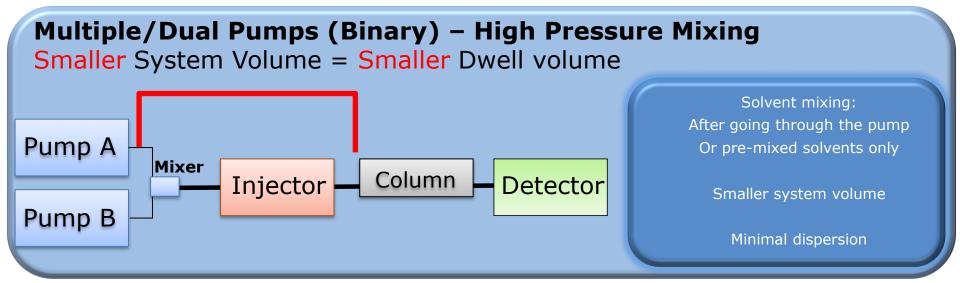
Polysulphone material from filter membranes plugging inlet frit

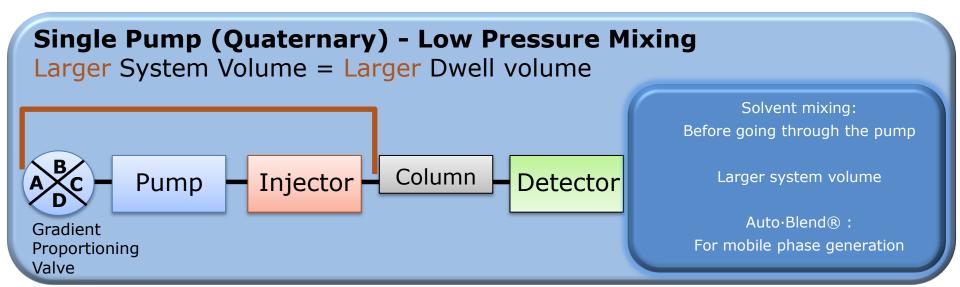
Agenda



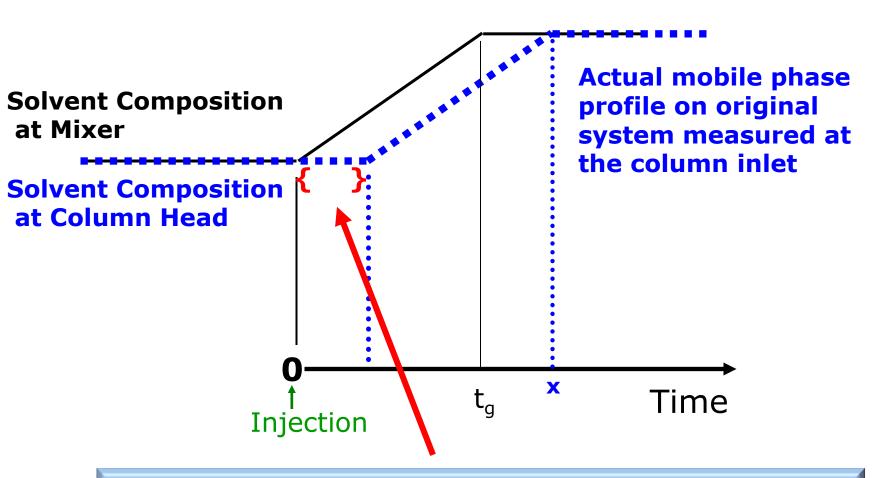
- USP <621> Chromatography Change Update
 - Taking advantage of the change
 - Examples
- Strategy for Successful Method Transfer
 - Prevention
 - Troubleshooting
 - Sources of Contamination
- Method Transfer Principle

Summary

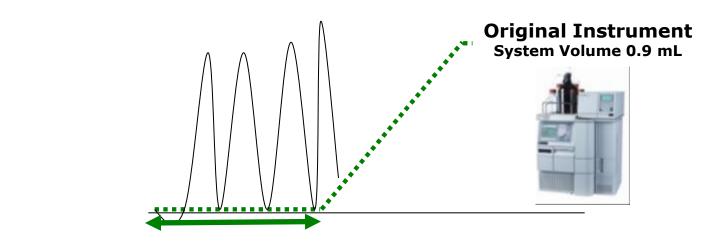


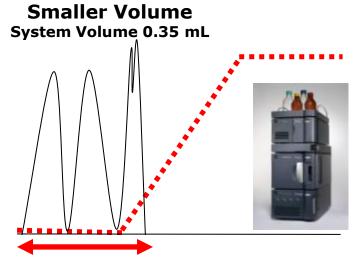

Waters THE SCIENCE OF WHAT'S POSSIBLE®

Differences in System Volume: Low vs. High Pressure Mixing

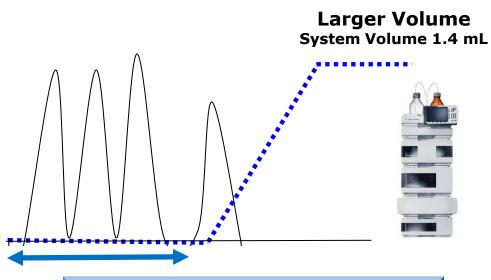


System Volume Timing Offset





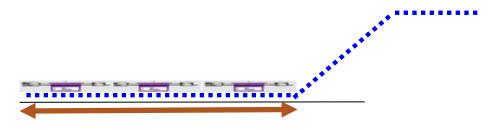
System volume creates an offset before the solvent composition change reaches the inlet of column (i.e., an "isocratic hold" at the beginning of every gradient)


Different System Volumes Effect on Separation

Target System with smaller volume (less isocratic hold time)

Target System with larger volume (longer isocratic hold time)

Gradient Type: Compensating for System Volumes



- Compare system volumes
 - This volume should be converted to "column volumes (CVs)" for the best comparison

- If target system gives smaller isocratic segment
 - ADD an initial hold to the gradient table to give the identical hold

- If target system gives larger isocratic segment
 - Use the pre-injector volume feature

Scaling Injection Volume

Guideline:

Injection volume should be less than 5% of column volume. Aim for <1% and experimentally determine if you can go higher based on chromatographic conditions.

4.6 x 150 mm

2.49 mL

20 μ L injection/2.49 mL = 0.8%

2.1 x 50 mm

0.17 mL

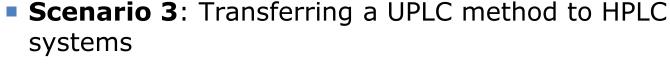
20 μ L injection/0.17 mL = 12%

If you inject too much, the result will be poor peak shape due to volume overload

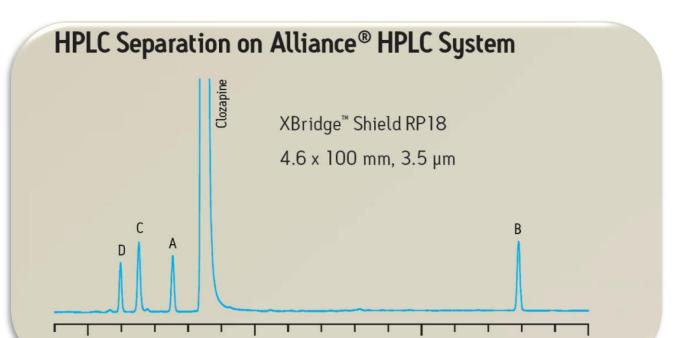
ACQUITY UPLC Columns Calculator

ACQUITY UPLC® Columns Calculator handles these calculations

Three Method Transfer Scenarios



- Scenario 1 : Maximizing Asset Utilization
 - Applying existing HPLC methods onto HPLC and ACQUITY UPLC H-Class systems
 - Adapting HPLC methods to different system designs


- Scenario 2 : Transferring a HPLC method to UPLC systems
 - Converting a legacy HPLC method into a UPLC method

- Taking advantage of UPLC for quickly and efficiently developing a method
- Transfer this method to labs still equipped with HPLC systems

Scenario 1 - Maximizing Asset Utilization: Adapting HPLC Methods to Different Systems Design

Future-proofing your lab

12

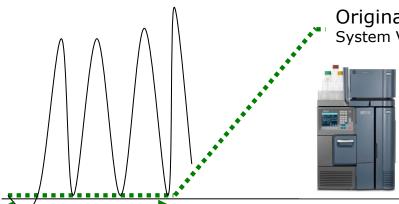
Invest in new instrumentation that can run both legacy HPLC methods and UPLC methods for new projects

Goal

Transfer existing HPLC method to a different LC system Must compensate for system dwell volume differences

16

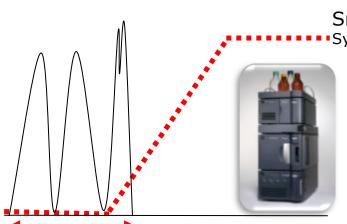
28


©2015 Waters Corporation

20

24 min

Scenario 1: LC Instrument Transfer

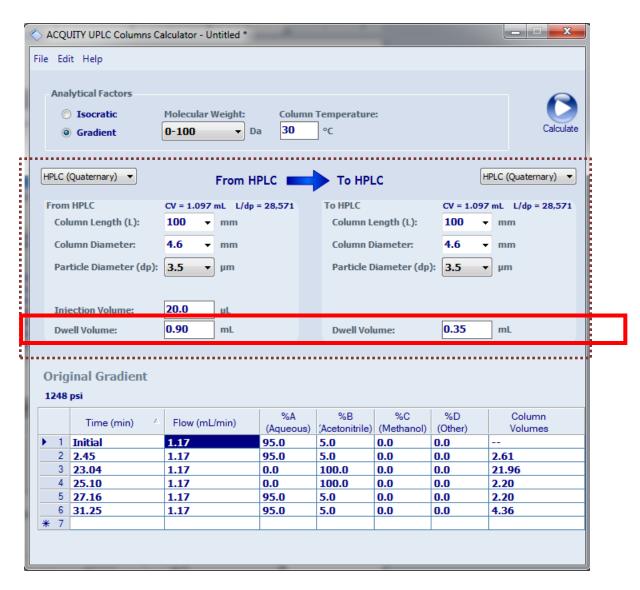

Original Instrument System Volume **0.9 mL**

Column Volume 4.6 x100 mm : 1.66 ml

Conversion in column volumes : 0.9/1.66 = 0.54 cv

Target System with smaller volume (less isocratic hold time)
Must compensate with an isocratic hold to preserve separation

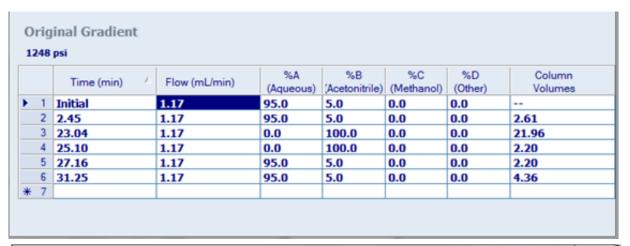
Smaller Volume
System Volume 0.35 mL



Column Volume 4.6 x100 mm: 1.66 ml

Conversion in column volumes : 0.35/1.66 = 0.21 cv

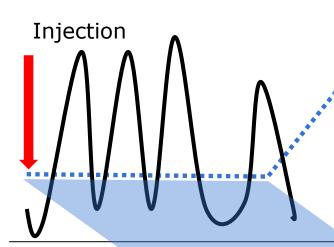
Scenario 1: HPLC to HPLC Method Transfer



Dwell Volume

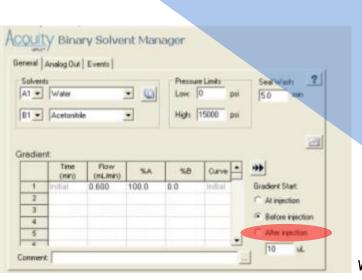
To preserve the gradient profile when transferring from one instrument to another, the system dwell volume must be considered.

Scenario 1: HPLC to HPLC Method Transfer


Gradient Column Volumes

To preserve the gradient profile, the number of gradient column volumes for each step, should be maintained.

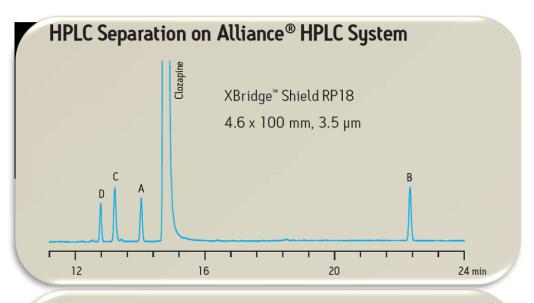
As a result, the gradient time table has been adjusted.


Waters

Why Add an Isocratic Hold?

Alliance HPLC

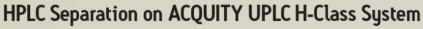
System with larger dwell volume (longer isocratic hold time)

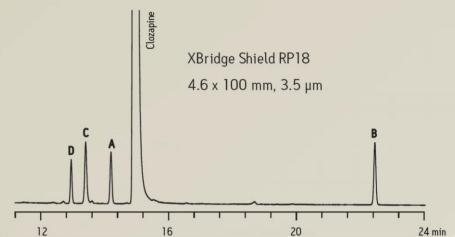

nje**c**tion ACQUITY UPLC H-Class

System with smaller dwell volume (less isocratic hold time)

- 1. Isocratic Hold
- 2. Tubing

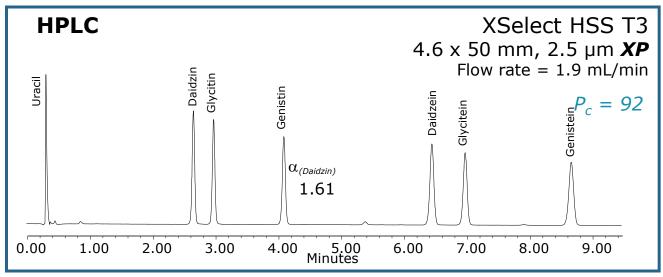
Scenario 1 - The Result: HPLC to HPLC Method Transfer

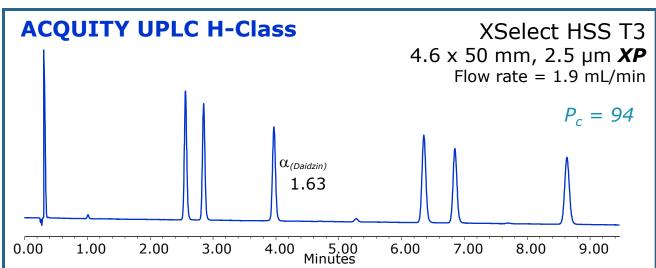


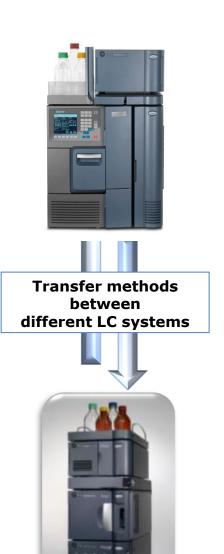

Future-proof your lab

Run HPLC methods on ACQUITY UPLC H-Class

Flexibility to run both HPLC and UPLC methods


33





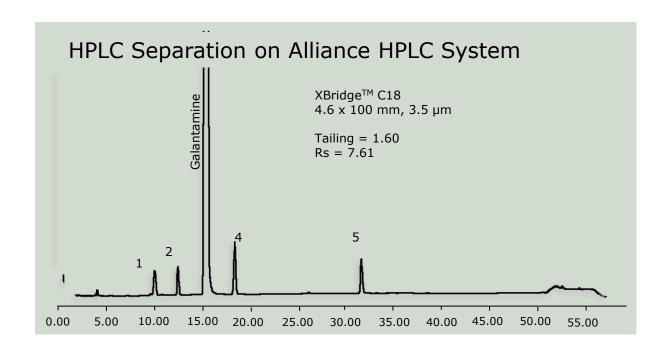
Ease of Method Transfer Between LC Platforms

Three Method Transfer Scenarios

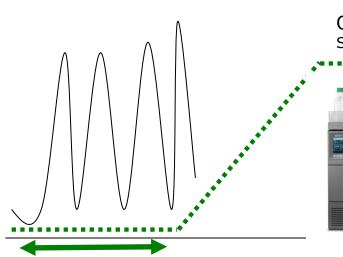
- Scenario 1 : Maximizing Asset Utilization
 - Applying existing HPLC methods onto HPLC and ACQUITY UPLC H-Class systems
 - Adapting HPLC methods to different system designs

- Scenario 2 : Transferring a HPLC method to UPLC systems
 - Converting a legacy HPLC method into a UPLC method

- Taking advantage of UPLC for quickly and efficiently developing a method
- Transfer this method to labs still equipped with HPLC systems


Scenario 2: Turning a Legacy HPLC Method Into a UPLC Method

Method Transfer - Reduce Analysis Time

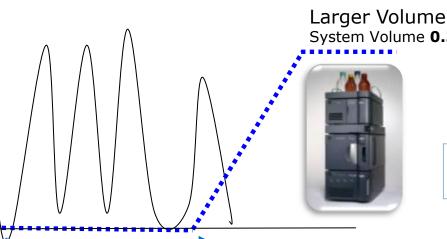

Take advantage of sub-2-µm particle technology and transfer to ACQUITY UPLC H-Class system

Criteria

USP Tailing <2.0, Rs (galantamine/impurity 4) >4.5

Scenario 2: LC Instrument Transfer

Original Instrument System Volume 0.9 mL

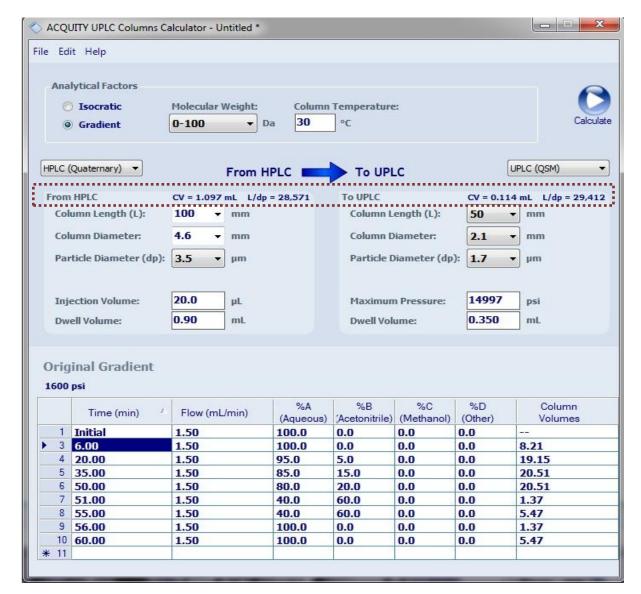


Column Volume 4.6 x100 mm : 1.66 ml

Conversion in column volumes: 0.9/1.66 = 0.54 cv

Target System with larger volume in cv (longer isocratic hold time)

System Volume 0.35 mL



Column Volume 2.1 x50 mm: 0.17 ml

Conversion in column volumes: 0.35/0.17 = 2.06 cv

Scenario 2: Turning a Legacy HPLC Method Into a UPLC Method

L/dp (Column Length to Particle Size Ratio)

To preserve the separation power of the gradient, L/dp must be matched

Scenario 2: Turning a Legacy HPLC Method Into a UPLC Method

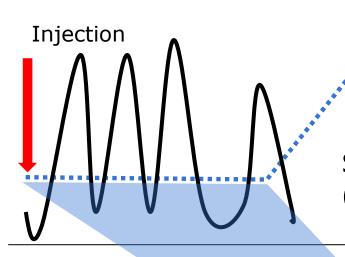
Waters

Injection Volume

To preserve the mass and volume load on column, the injection volume must be scaled appropriately

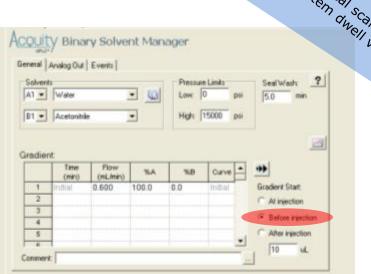
		Column		Run Time (min)	Peak Cap	acity Flow (mL/r		ure	Injection Volume (uL)	
		Original HPLC	column con	ditions						
		100 mm x 4.6 mm, 3	.5 μm	60.00	68	1.500	989	-	20.0	
		New UPLC con	ditions with	scaled grad	lient (accou	unting for pa	article size)	-		
		50 mm x 2.1 mm, 1.3	7 μm	14.17	69	0.644	4850	-	2.1	
989 p	jinal Gradient si		0.4	0.0	840	845	0.1			
	Time (min)	Flow (mL/min)	%A (Aqueous)	%B 'Acetonitrile)	%C (Methanol)	%D (Other)	Column Volumes	^		
1	Initial	1.50	100.0	0.0	0.0	0.0				
	6.00	1.50	100.0	0.0	0.0	0.0	8.21			
	20.00	1.50	95.0	5.0	0.0	0.0	19.15			
	35.00	1.50	85.0	15.0	0.0	0.0	20.51	=		
	50.00	1.50	0.08	20.0	0.0	0.0	20.51	_		
	51.00	1.50	40.0	60.0	0.0	0.0	1.37	_		
•	55.00	1.50	40.0	60.0	0.0	0.0	5.47	_		
	56.00	1.50	100.0	0.0	0.0	0.0	1.37			
	60.00	1.50	100.0	0.0	0.0	0.0	5.47			
*								M		

Pre-Injector Volume


To preserve the gradient profile, the pre-injector volume must be used.

This allows the gradient to start before the injection is triggered.

		UPLC Gradient injector volume = 256 p		New UPLC conditions with scaled gradient (accounting for particle size), 50 mm × 2.1 mm, 1.7 μm column						
ď		Time (min)	Flow (mL/min)	%A (Aqueous)	%B (Acetonitrile)	%C (Methanol)	%D (Other)	Column Volumes	^	
•	1	Initial	0.644	100.0	0.0	0.0	0.0			
	2	1.06	0.644	100.0	0.0	0.0	0.0	5.96		
	3	4.46	0.644	95.0	5.0	0.0	0.0	19.15		
	4	8.10	0.644	85.0	15.0	0.0	0.0	20.51	1	
	5	11.74	0.644	80.0	20.0	0.0	0.0	20.51		
	6	11.99	0.644	40.0	60.0	0.0	0.0	1.37		
	7	12.96	0.644	40.0	60.0	0.0	0.0	5.47		
	8	13.20	0.644	100.0	0.0	0.0	0.0	1.37	Ų	
	9	14.17	0.644	100.0	0.0	0.0	0.0	5.47	1	


Waters THE SCIENCE OF WHAT'S POSSIBLE.®

Why Use a Pre-Injection Volume?

Alliance HPLC

System with larger dwell volume (longer isocratic hold time)

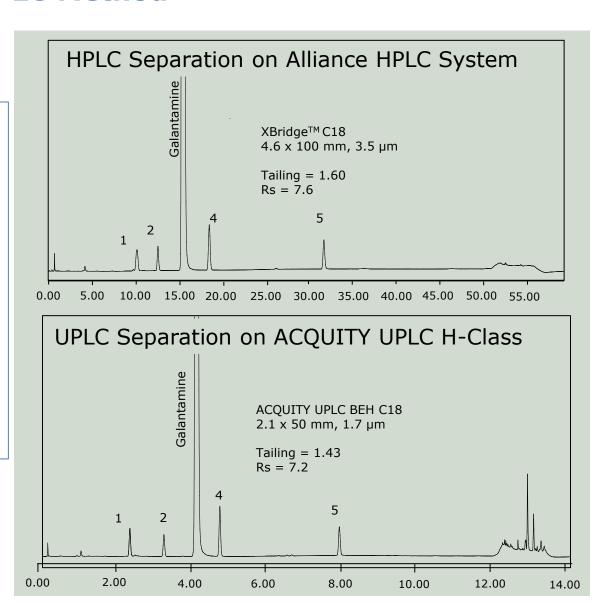
Injection

ACQUITY
UPLC H-Class

System with smaller dwell volume (less isocratic hold time)

Scenario 2 - The Result: Turning a Legacy HPLC Method Into a UPLC Method

41


Adjustment of method

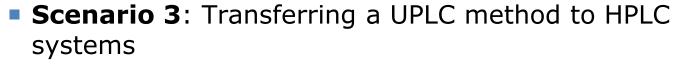
Reduce analysis time 4.3X while preserving separation integrity

Tailing and Resolution Criteria were met

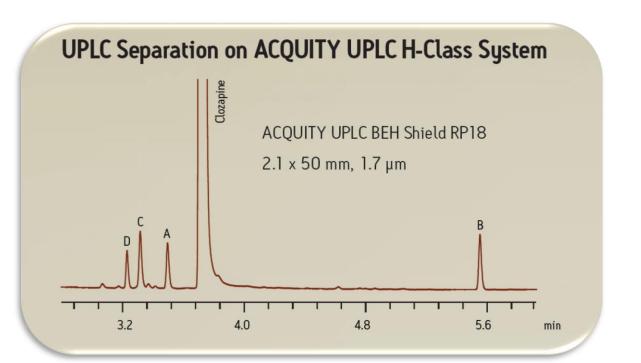
Criteria

USP Tailing < 2.0 Rs (galantamine/impurity 4) > 4.5

Three Method Transfer Scenarios



- Scenario 1 : Maximizing Asset Utilization
 - Applying existing HPLC methods onto HPLC and ACQUITY UPLC H-Class systems
 - Adapting HPLC methods to different system designs


- Scenario 2 : Transferring a HPLC method to UPLC systems
 - Converting a legacy HPLC method into a UPLC method

- Taking advantage of UPLC for quickly and efficiently developing a method
- Transfer this method to labs still equipped with HPLC systems

Scenario 3: UPLC to HPLC Method Transfer

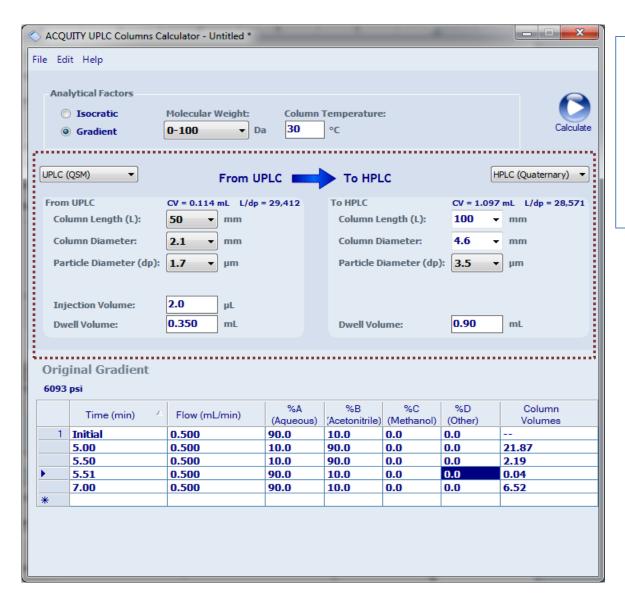
Maximize Asset Utilization

Transfer from UPLC to another department/contract partner that has a bank of HPLC instruments

Goal

Transfer UPLC method to HPLC while maintaining selectivity

Waters



Scenario 3: UPLC to HPLC Method Transfer

Easy Method Transfer

The ACQUITY UPLC Columns Calculator will provide target method key parameters automatically.

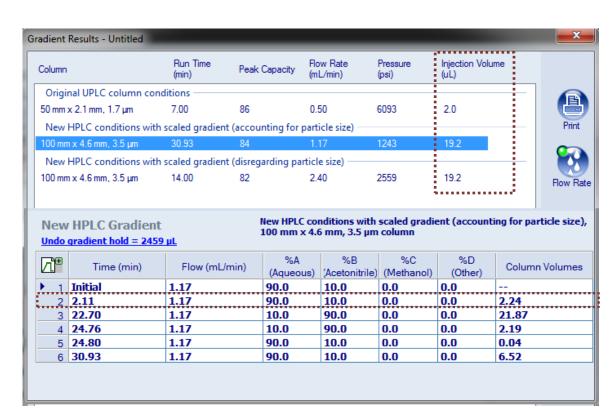
Scenario 3: UPLC to HPLC Method Transfer

ACQUITY UPLC Columns Calculator

For automatic calculations

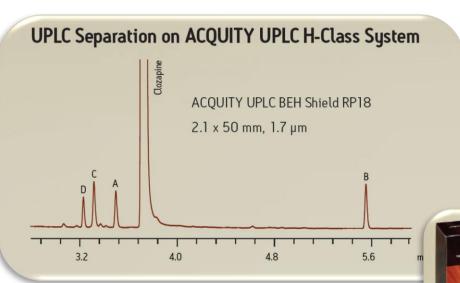
Injection Volume

Injection volume properly scaled

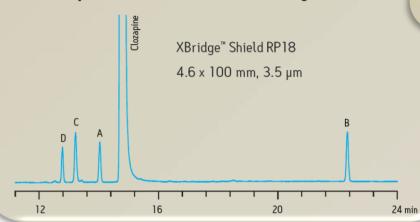

Extra Gradient Hold

 Automatically calculated and inserted into gradient table

N_{cv} (Column Volumes)


Kept consistent throughout gradient steps

Orig 6093	inal Gradient psi						
	Time (min)	Flow (mL/min)	%A (Aqueous)	%B (Acetonitrile)	%C (Methanol)	%D (Other)	Column Volumes
- 1	Initial	0.500	90.0	10.0	0.0	0.0	
	5.00	0.500	10.0	90.0	0.0	0.0	21.87
	5.50	0.500	10.0	90.0	0.0	0.0	2.19
•	5.51	0.500	90.0	10.0	0.0	0.0	0.04
	7.00	0.500	90.0	10.0	0.0	0.0	6.52
*							


Scenario 3 - The Result: Transfer a UPLC Method to HPLC Systems

Relative RT to Clozapine						
Peak	H-Class	HPLC				
Impurity D	0.867	0.865				
Impurity C	0.890	0.895				
Impurity A	0.939	0.950				
Clozapine	1.000	1.000				
Impurity B	1.500	1.513				

HPLC Separation on Alliance® HPLC System

Maximize Asset Utilization

Transfer between HPLC and UPLC

Sustained selectivity between particle sizes

©2015 Waters Corporation 46

HPLC

Summary

- USP Chapter <621> Chromatography updated Aug-2014
- Other Pharmacopoeias (eg. EU) expected to follow. USP and EurP to harmonize both chapter <621> and 2.2.46 to the extent possible
- Isocratic methods: more flexibility in column dimensions
- Gradient methods changes more limited
- Most methods can be transferred seamlessly from HPLC to UPLC
- Take advantage of these changes:
 - Improve isocratic methods with sub-2-µm columns and ACQUITY UPLC H-Class
 - Moderate savings with sub-3-µm columns with HPLC
 - Use Column Selectivity Chart to select the best UPLC column
 - Use the ACQUITY Columns Calculator for proper transfers per L/dp
 - Utilize ACQUITY UPLC H-Class to run both HPLC and UPLC methods
- For successful UPLC transfer, always ensure:
 - Method compatibility
 - System cleanliness (avoid bacteria)
 - Fresh, high quality mobile phases are prepared

Waters

THE SCIENCE OF WHAT'S POSSIBLE.™