

50 essential selectivities for small organic molecules Identification, quantification & purification Ideal for analysts & chemists

Uptisphere® CS Evolution Uptisphere® Strategy™ Uptisphere® 120Å puriFlash®

OUR SILICA TECHNOLOGIES

All of our Uptisphere® silicas (120Å, CS Evolution, Strategy™, puriFlash® and puriFlash® Bio) follow rigorous and innovative manufacturing processes. Base silicas are produced in ceramic reactors from standard particles for purification and or totally free of all traces of metals for analysis. Each of the different synthesis steps is strictly controlled.

This rigor leads to extremely mechanically stable particles. The particle size and porosity distributions, as well as the specific surface areas, are perfectly defined and reproducible.

Our puriFlash® and puriFlash® Bio silicas are specifically designed to meet the requirements of preparative liquid chromatography. They combine quality and cost effectiveness.

Our silicas have three major advantages:

1. Perfect control of the surface state.

We physically or chemically modify the surface of the silica to choose the type, the amount of silanols or the overall surface energy according to the objective to be achieved.

2. Cylindrical pores.

The quantity of free silanols and their excellent accessibility creates a homogeneous and particularly dense functionalization (grafting). This results in very good loading capacity and good stability of these stationary phases under aggressive mobile phase conditions such as basic buffers

3. High mechanical stability.

Our stationary phases can withstand multiple packing and unpacking without damaging the integrity of the substrate. They are the tool of choice for preparative chromatography.

Modified silicas:

The Laboratoire d'Etude des Techniques et des Instruments d'Analyse Moléculaire (LETIAM), a constituent unit of the analytical chemistry group of Paris Sud located at the IUT of Orsay, played a fundamental role in our research, which led to the development of our stationary phases.

The laboratory of Sciences and Separative Methods - (SMS) of the Institute of Research in Fine Organic Chemistry - (IRCOF) has cemented part of our ideas by developing innovative synthesis schemes for the modification of our «Core-Shell» silicas Uptisphere® CS Evolution.

Today, we offer about 50 selectivities to meet the needs of analysts and chemists for the identification, quantification and purification of small organic molecules, peptides and proteins.

SILICAS FOR (U)HPLC, PREP-LC & FLASH COLUMNS

Uptisphere® CS Evolution

Core Shell columns for fast and highly efficient identification and quantification of small molecules.

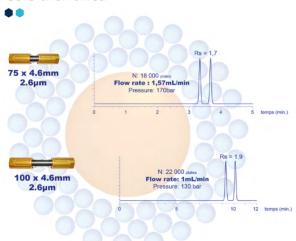
Uptisphere® Strategy™

(U)HPLC, Analytical and prep LC columns with high surface area for identification, quantification and purification of small molecules and pharma compounds.

Uptisphere® 120Å

HPLC and prep LC columns for the identification, quantification of small molecules and pharma compounds.

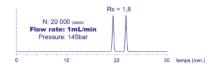
puriFlash®

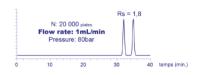


Analytical, prep-LC and Flash columns with high load-ability for routine analysis and easy transfer to purification of small organic molecules in pharma applications.

TECHNICAL DATA

Core-shell silica




Totally porous silica

TECHNICAL DATA

High Performance Hardware™

• 1200 bar maximum pressure • Used for HPLC & UHPLC columns • High performance

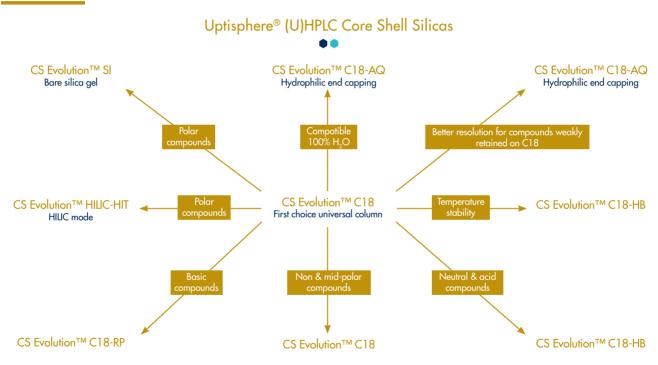
(2.1 - 3.0 - 4.0 - 4.6 - 10.0 - 21.2 - 30.0 - 50.8) mm x (25 - 50 - 100 - 125 - 150 - 250) mm Easy transfer from any columns to «ready-to-go» and secure analytical, or gradient purification method

• 900 bar maximum pressure • Low dead volume • High performance

Core shell guard cartridges	Reverse phase	HILIC mode	Normal phase
2.6µm - 5 x 2.1mm - 3u	CS-RP-2.6-005/021	CS-HILIC-2.6-005/021	
2.6µm - 5 x 4.0mm - 3u	CS-RP-2.6-005/046	CS-HILIC-2.6-005/046	

Guard cartridges	Reverse phase	HILIC mode	Normal phase
1.7µm - 5 x 2.1mm - 3u	UP-RP-1.7-005/021		
1.7μm - 5 x 4.0mm - 3u	UP-RP-1.7-005/046		
2.2µm - 5 x 2.1mm - 3u	UP-RP-2.2-005/021	UP-HILIC-2.2-005/021	UP-NP-2.2-005/021
2.2µm - 5 x 4.0mm - 3u	UP-RP-2.2-005/046	UP-HILIC-2.2-005/046	UP-NP-2.2-005/046
3μm - 5 x 2.1mm - 3u	UP-RP-3-005/021	UP-HILIC-3-005/021	UP-NP-3-005/021
3μm - 5 x 4.0mm - 3u	UP-RP-3-005/046	UP-HILIC-3-005/046	UP-NP-3-005/046
5μm - 5 x 2.1mm - 3u	UP-RP-5-005/021	UP-HILIC-5-005/021	UP-NP-5-005/021
5μm - 5 x 4.0mm - 3u	UP-RP-5-005/046	UP-HILIC-5-005/046	UP-NP-5-005/046

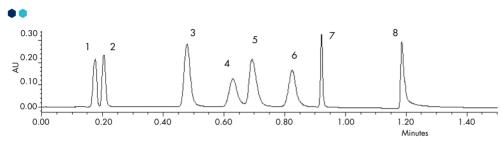
UPTISPHERE® CS EVOLUTION **STATIONARY PHASES**



(MOST* Grade)

* MOST: Maximum Operational Surface Technology

		USP code	Ø pore	Surface	2.6µm	Bonding	Functiona- lization	% carbon	End- capping	pH stability	Use mode	Application
CH ₃ CH ₃	:18	L1	85Å	130m²/g	x	C18 - octadecyl	mono- functional	9.0%	One step	1.5 - 7.5	RP	Serves a broad-ship of analytical & prep LC requirements for separating non polar compounds.
	18- HB	L1	85Å	130m²/g	×	C18 - octadecyl	mono- functional	8.0%	One step	1.5 - 8.0	RP	Suitable for non polar compound separation. Exhibits a very hydrophobic surface. HB shows excellent stability under high temperature.
C-1-C ₁ H ₁ , C-1-C ₁ H ₂ , C-	18- RP	L1	85Å	130m²/g	×	C18 - octadecyl	mono- functional	6.0%	Mixed	1.5 - 8.0	RP	Suitable for mid & non polar compound separation. RP shows excellent mechanical stability that make it an excellent tool for analysis under acidic or basic conditions.
	18- \Q	LI	85Å	130m²/g	x	C18 - octadecyl	mono- functional	6.5%	Mixed	1.5 - 7.0	RP	Suitable for mid & non polar compound separation. Shows excellent stability under 100% aqueous mobile phase condition.
F	НТ	L3	85Å	130m²/g	×	Proprietary	Proprietary		Proprie- tary	1.5 - 7.0	HILIC	Aqueous normal phase separation (ANP) of water-soluble compounds. Typical mobile phase: water / ACN (> 70%). ANP is an excellent alternative to RP purification for highly polar compounds.


SELECTION GUIDE

^{*} MOST: Maximum Operational Surface Technology



Nucleobases, nucleosides & nucleotides

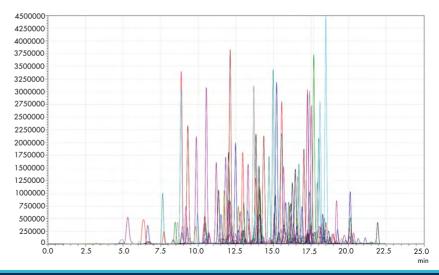
Column Uptisphere® CS Evolution™ 2.6µm HIT 50 x 2.1mm

Gradient: ACN / 20mM ammonium formate pH 3 Flow rate: 1 mL/min, Temp.: 30°C, UV 254nm

	pKa _{acid}	pKa _{basic}	logP
Uracil	9.80-13.80		-0.86
Uridine	9.70-12.60		-2.42
Adenine	9.90	5.20	-0.53
Adenosine	12.45	4.99	-2.09
Adenosine monophosphate			-5.19
Cytosine	9.98	2.35	-1.24
Cytidine	12.80-13.60		-2.80
Guanosine	10.20	1.8	-2.71

ENVIRONMENTAL APPLICATION

Automatic, simultaneous and rapid analysis of pesticides in surface and underground water by online SPE and UHPLC-MS/MS


Dorigne Toinon, Alban Huteau, SHIMADZU France, le Luzard II, bat A. Bd Allende, Noisiel, 77448 Marne La Vallée cedex 2, France,

Uptisphere® CS Evolution 2.6µm C18-AQ 150x3.0mm A: water + 0.002% formic acid

- + 2mM ammonium formate
- B: 50/50 acetonitrile/Methanol
 - + 0.002% formic acid
 - + 2mM ammonium formate

Flow: 0.7mL/min, 40°C System: Shimadzu Nexera X2

Method validated with LOQ up to 1ng/L for 272 pesticides on water matrix

■ UPTISPHERE® STRATEGY™ STATIONARY PHASES

	USP code	Ø pore	Surface	1. <i>7</i> µm	2.2 µm	3 µm	5 µm	Bonding	Functio- naliza- tion	% carbon	End- cap- ping	pH stabi- lity	Use mode	Application
CH ₃ C18-3	Lì	100Å	425m²/g			Х	х	C18 - octade- cyl	Mono- functio- nal	22.0%	Multi step	1.0 <i>-</i> 12	RP	The high bonding density of C18-3 facilitiates a strong separation of non polar compounds. Multi step bonding technology guarantees a fully end-capped phase, stable under basic pH conditions. C18-3 is an excellent phase for the separation of basic drugs at up to pH: 12.
C18- CH ₃ C18- CH ₃ HQ	LI	100Å	425m²/g	x	x	х	x	C18 - octade- cyl	Mono- functio- nal	19.0%	Multi step	1.0 - 10	RP	This utility phase serves many pharmaceutical applications. Its $425\text{m}^2/\text{g}$ surface area provides excellent loading capacity.
CH ₃ CH ₃ C18-C18-C18-RP	Ll	100Å	425m²/g		×	×	×	C18 - octade- cyl	Mono- functio- nal	16.0%	Multi step Mixed	1.5 - 8.0	RP	Suitable for mid & non polar compounds separation. RP shows excellent mechanical stability that make it an excellent tool for purification under acidic or basic conditions.
CH ₃ C12		100Å	425m²/g		×		×	C12 - dode- cyl	Mono- functio- nal	16.0%	One step	1.5 - 8.0	RP	Non polar compounds. Less retentive than C18 with greater capacity.

UPTISPHERE® STRATEGYTM STATIONARY PHASES

	USP code	Ø pore	Surface	2.2 µm	3 µm	5 µm	Bonding	Functio- nalization	End- capping	pH stability	Use mode	Application
15 PHC4 1-0-51-C,H ₃ -© 1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1	L11	100Å	300m²/g	x	x	x	Phenyl - Butyl	Mono- functional	One step	1.5 - 7.5	RP	Very selective for compounds with aromatic cycles and mid-polar compounds.
HILC- HIT	L3	100Å	425m²/g	×	×	×	Proprie- tary	Proprietary	Proprietary	1.5 - 7.0	HILIC	Aqueous normal phase separation (ANP) of water-soluble compounds. Typical mobile phase: water / ACN (> 70%). ANP is an excellent alternative to RP purification for highly polar compounds.
O-SI-R1-R2 HILIC CH, CH, HIA	L3	100Å	300m²/g	х	x	х	Proprie- tary	Proprietary	Proprietary	2.0 - 7.0	HILIC	Aqueous normal phase separation (ANP) of water-soluble compounds. Typical mobile phase: water / ACN (> 70%). ANP is an excellent alternative to RP purification for highly polar compounds.
O-SI-OH SI	L3	100Å	425m²/g	×	×	×	Ultra pure silica		None	1.5 - 7.0	NP	Non-ionic, polar organic compounds.

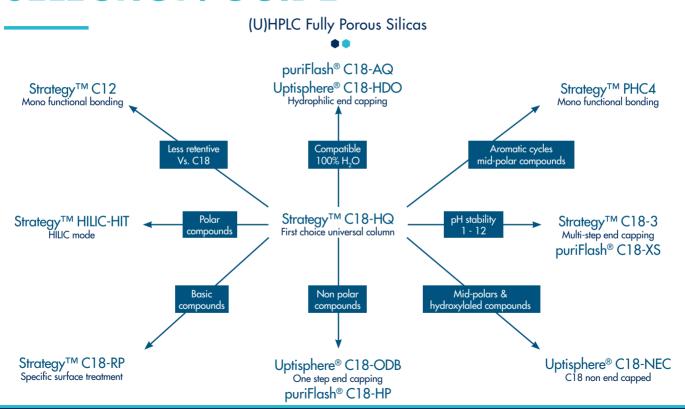
UPTISPHERE® 120Å **STATIONARY PHASES**

	USP code	Ø pore	Surface	2.2 µm	3 J	5 µm	Bonding	Functio- nalization	% carbon	End- capping	pH stability	Use mode	Application
C18- CH ₃ HSC	L1	60Å			×	×	C18 - octade- cyl	Mono -functional	20.0%	Multi step	1.5 - 8.0	RP	Non-polar compounds.
CH ₃ C18- CH ₃ CDB	L1	120Å	320m²/g	×	×	×	C18 - octade- cyl	Mono -functional	18.0%	One step	1.5 - 7.0	RP	Serves a broad-ship of analytical & prep LC requirements for separating non polar compounds.
C18- C18- C19- C19- C19- C19- C19- C19- C19- C19	Lī	120Å	320m²/g	x	x	x	C18 - octade- cyl	Mono -functio- nal	17.0%	Mixed	1.5 - 7.0	RP	Suitable for mid & non polar compound separation. Shows excellent stability under 100% aqueous mobile phase condition.
C18- CH ₃ NEC -0-SI-C _M H ₂₂	Ll	120Å	320m²/g	×	х	×	C18 - octade- cyl	Mono -functional	16.0%	None	1.5 - 6.5	RP	NEC strongly retains the polar and mid-polar compounds. It overcomes peak tailing with compounds that contains chains and /or carbon cycles combined with numerous polar groups and/or basic in character.

UPTISPHERE® 120Å STATIONARY PHASES

		USP code	Ø pore	Surface	3µm	5µm	Bonding	Functio- naliza- tion	% carbon	End- capping	pH stability	Use mode	Application
O I I C ₁₈ H ₃₇	C18- TF	Ll				×	C18 - octade- cyl	Poly -functio- nal	14.0%	One step	1.5 - 8.0	RP	Alternative selectivity for challenging separations & for - but not limited to - aromatic, polyphenol, PAHs etc.
CH ₃ O - C ₁ -C ₂ H ₁₂ O - C ₁ -C ₂ H ₁₂ O - CH ₃ O	C8	L7	120Å	320m²/g	×	x	C8 - octyl	Mono -functio- nal	11.0%	One step	2.0 - 7.0	RP	Mid-polar and non polar compounds. Less retentive than C18.
CH ₃ CH ₃ CH ₃ CH ₃	MM1	L44	120Å	320m²/g		×	C8 / SCX	Mono -functio- nal		One step	2.0 - 6.5	RP / El	Ion exchange and hydrophobic chains are bonded onto the surface of silica providing unique selectivity. Compounds that possess basic functionality are retained by ion exchange functionality. An organic solvent will elute hydrophobic compounds.
CH ₃ CH ₃ CN CH ₃ CN CH ₃ CN	CN	L10	120Å	320m²/g	×	х	CN - cyano	Mono -functio- nal	8.0%	One step	2.0 - 7.0	RP / NP	CN functional groups can be used either in normal phase to purify polar compounds or in reverse phase for mid-polar compounds.

UPTISPHERE® 120Å **STATIONARY PHASES**


	USP code	Ø pore	Surface	2.2µm	3µm	5µm	Bonding	Functio- naliza- tion	% car- bon	End- capping	pH stability	Use mode	Application
OH OH OH OH OH OH OH	L20	120Å	320m²/g			(×)	OH - diol	Mono -functio- nal	6.0%	None	1.5 - 6.5	RP / NP	The diol function provides globally a neutral surface onto the silica. It leads to greater separation of basic compounds by normal phase vs. regular silica.
CH ₃ NH2	L8	120Å	320m²/g	×	х	x	NH2 - amino	Mono -functio- nal	5.0%	None	2.0 - 6.5	RP / NP / EI	Can be either weak anion exchangers for strong acids, or polar media that can interact with OH, NH, SH
O ₅ - CCH, J ₁ - SO ₅ H' SCX	L50	120Å	320m²/g			X	Strong Cation Exchan- ger	Mono -functio- nal		None	1.0 - 7.5	EI	Strong cation exchange (SCX) contains sulfonic acid used to analyze weak basic compounds which have one or more positive charges.
O _y , I (CH ₂) ₃ N'(CH ₃) ₃ SAX	L14	120Å	320m²/g			×	Strong Anion Exchan- ger	Mono -functio- nal		None	1.0 - 7.5	EI	Strong anion exchange (SAX) contains quaternary amine used to analyze weak acid compounds which have one or more negative charged, nucleotides, nucleosides, organic acids

PURIFLASH® STATIONARY PHASES

		USP code	Ø pore	Surface	5µm	Bonding	Functio- naliza- tion	% carbon	End- capping	pH stability	Use mode	Application
CH ₃ Cl ₃ Cl ₄ Cl ₃ Cl ₄ Cl ₄ CH ₃	18-XS	L1	100Å	300m²/g	х	C18 - octade- cyl	Mono -functio- nal	17.0%	Mul- ti-step	1.0 <i>-</i> 10.0	RP	The proprietary multi-step bonding technology guarantees a fully end-capped phase, stable under basic pH conditions up to pH: 10. It's an excellent phase for the integral purification of basic drugs.
	C18- HP	LI	100Å	300m²/g	x	C18 - octade- cyl	Mono -functio- nal	16.5%	One- step	1.5 - 7.5	RP	Serves many pharmaceutical applications. Excellent choice for routine purification in reverse phase mode.
	C18- AQ	LI	100Å	300m²/g	x	C18 - octade- cyl	Mono -functio- nal	14.0%	Mixed	2.0 - 7.5	RP	The bonding chemistry allow to start gradient with 100% of water. Suitable for the purification of mid and non polar compounds.
CH ₃ RP	P-AQ	l7	60Å	500m²/g	х	RP-alkyl	Mo- no-func- tional	6.0%	Mixed	2.0 - 7.5	RP	The bonding chemistry allow to start gradient with 100% of water. Suitable for the purification of high and mid polar compounds. Compare to C18, peaks are elutes earlier from he beginning of the gradient.

SELECTION GUIDE

Characterization of Furosemid within rat plasma & broncho-alveolar washing

Uptisphere® Strategy™ 1.7µm C18-HQ, 50 x 2.1mm

Conditions:

Agilent 1200 RRLC + Qtrap 4000 Solvent A: 0.1% CH₃COOH

Solvent B: ACN + 0.1% CH₃COOH

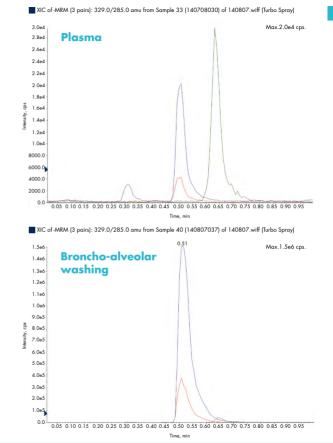
Isocratic (50/50)

Flow rate: 600µL/min @ 500bar (7000psi)

LD: 2.14µg/L Injection: 10µL MS: 329 to 285

System: Shimadzu Nexera X2

Comments:


This study will be published.

We can see a big peak within the plasma and nothing except the Internal Standard (IS) within the broncho-alveolar washing.

IS run time: 0.5min

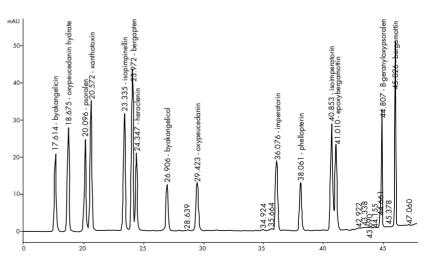
Furosemid run time: 0.64min - a "supposed" metabolite is eluted within the plasma extract at 0.3min.

Total run time: 1 min.

Analysis of Furocoumarins in citrus essential oils

Uptisphere® 3µm C18-ODB, 150 x 2.1mm

Conditions:


Solvent A: water - acetonitrile - THF (85/10/5)

Solvent B: acetonitrile - methanol - THF (65/30/5)

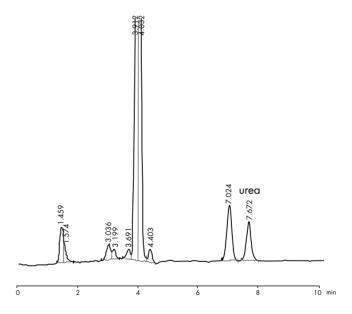
Flow rate: 0.3mL/min

DAD: 310nm

Time min	0 to 5	5 to 20	20 to 24	24 to 38	38 to 40	Rinse	Equilibra- tion
% B	0	0-32	32	32 - 55	55 - 90	90	0
	isocratic	linear	isocratic	linear	linear	10min	10min

Urea from diesel particles extracts

Uptisphere® Strategy™ 5µm HILIC-HIT, 250 x 4.6mm


Conditions:

Acetonitrile 100% Flow rate: 1mL/min Temperature: 20°C DAD: 195nm Injection: 10µL

Benefits:

The column provides the following advantage in comparison to the previous one.

- Better urea retention
- Deletion of interferences
- Symmetrical urea peak

How to request more information, a quotation or to place an order

Please see from the list below:

E-mail

Online

info.EU@advion-interchim.com quotes.EU@advion-interchim.com orders.EU@advion-interchim.com www.advion-interchim.com

Phone

+33 4 70 03 88 55

All your orders will be recorded & processed as quickly as possible.

You need technical assistance?
Our scientific experts are here to help.

consumables@advion-interchim.com

Advion Interchim Scientific is the market-facing name of a partnership between Advion, Inc. and Interchim SAS, separate companies that have agreed to market and distribute their products together.

All registered and trademark belong to their respective owners. Non-contractual pictures.