
## HALO: | Fused-Core® Particle Technology

Application Note: 204-TOX

### LC-MS Separation of Kratom and its Metabolite on HALO $^{\rm @}$ C18, 2 $\mu m$



### **TEST CONDITIONS:**

Column: HALO 90 Å C18, 2 μm, 2.1 x 50mm

Part Number: 91812-402

Mobile Phase A: Water/0.1% Formic acid Mobile Phase B: ACN/0.1% Formic acid

Gradient: <u>Time</u> <u>%B</u>

0.0 10 4.00 95 5.00 95 5.01 10 7.00 END

Flow Rate: 0.4 mL/min Initial Pressure: 315 bar Temperature: ambient Injection Volume: 2 µL

Sample Solvent: 95/5 ACN/Water

### **PEAK IDENTITIES:**

1. 7-OH Mitragynine (MH+=415.502 g/mol)

2. Mitragynine (MH<sup>+</sup>=399.453 g/mol)

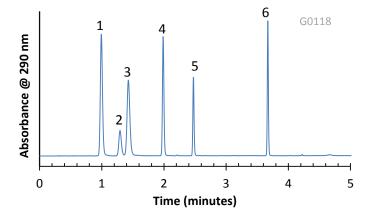
### MS CONDITIONS:

LCMS system: Shimadzu LCMS-2020

Detection: +ESI MS Spray voltage: 4.50 kV Drying line temp: 300 °C Heat Block: 450 °C

The 2 µm HALO C18 is an ideal choice for analysis of kratom and its metabolite. Kratom is an herbal extract that comes from the leaves of an evergreen tree (Mitragyna speciosa) grown in Southeast Asia. Believed to act on opioid receptors, kratom has been used by people to mitigate the symptoms of opioid withdraw. However, studies on the effects of kratom have identified many safety concerns and no clear benefits, and kratom is not currently regulated by the United States.






| Application Not | te: 177-P                                                      |
|-----------------|----------------------------------------------------------------|
|                 | Chinese Pharmacopeia Separation of Parabens on HALO C18, 2.7µm |
| I               |                                                                |
|                 |                                                                |
|                 |                                                                |
|                 |                                                                |
|                 |                                                                |
|                 |                                                                |
|                 | <del></del>                                                    |

# HALO: | Fused-Core® Particle Technology

Application Note: 133-P

# Separation of Resveratrols and Related Compounds on HALO 5 C18



### **PEAK IDENTITIES:**

- 1. trans-Polydatin
- 2. Piceatannol
- 3. trans-Oxyresveratrol
- 4. trans-Resveratrol
- 5. cis-Resveratrol
- 6. Pterostilbene

### **TEST CONDITIONS:**

Column: 3.0 x 100 mm, HALO 5 C18, 5 µm

Part Number: 95813-602

Mobile Phase:

A= Water

B= Methanol

Gradient:

| Time | %B |
|------|----|
| 0.0  | 32 |
| 1.0  | 32 |
| 4.0  | 90 |
| 5.0  | 90 |

Flow Rate: 1.2 mL/min. Pressure: 245 Bar Temperature: 35°C

Detection: UV 290 nm, VWD Injection Volume: 1.0 μL

Sample Solvent: 50/50: Acetonitrile/water

Response Time: 0.02 sec.

Data rate: 25 Hz.

Flow Cell: 2.5 µL semi-micro

LC System: Shimadzu Prominence UFLC XR

ECV: ~14 μL

These naturally occurring compounds can be found in grapes and grape vines and other plants and are claimed to have health benefits. Resveratrol and these related compounds can be analyzed in less than 5 minutes using a HALO 5 C18 column.

### **STRUCTURES**:

trans-Polydatin

Piceatannol

trans-Oxyresveratrol

trans-Resveratrol

cis-Resveratrol

Pterostilbene

