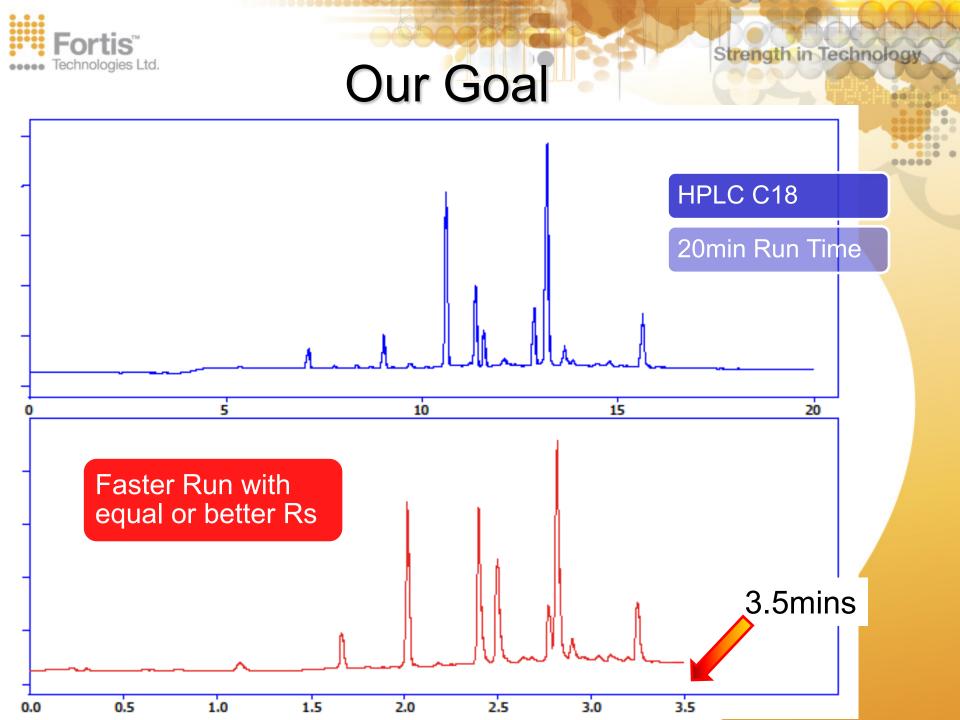


Method Optimisation

Moving to Fortis SpeedCore particles

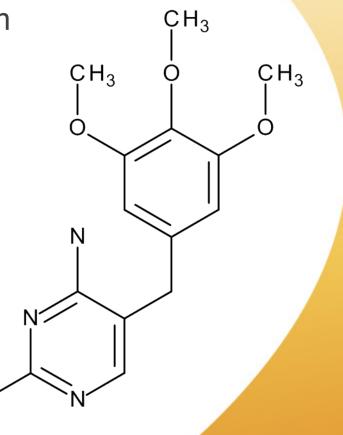

Transfer of Methods

Strength in Technology

Reduction of current HPLC methods

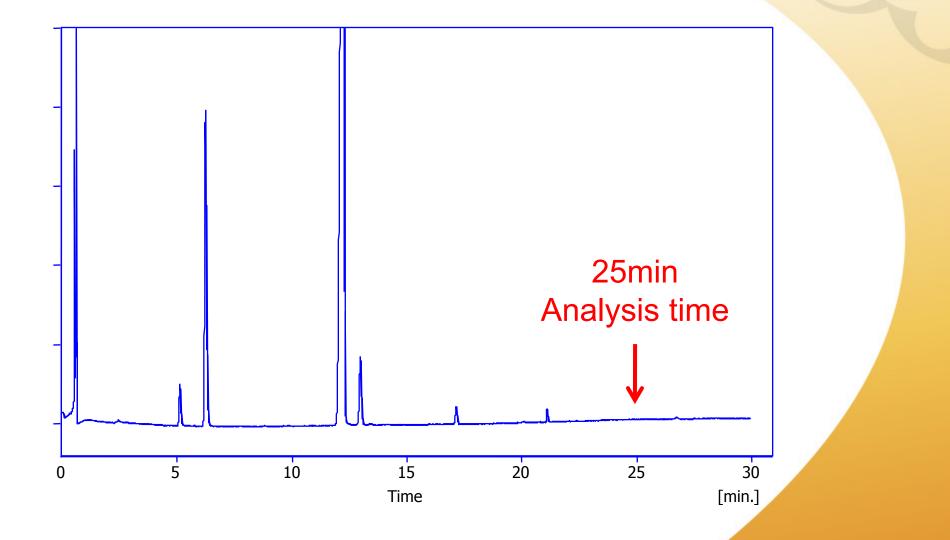
1 – 'Legacy' method transferred to new technology

- 2 'New' method back-scaled to prep or production scale
- 3 Method transfer between differing systems(Equivalence studies)

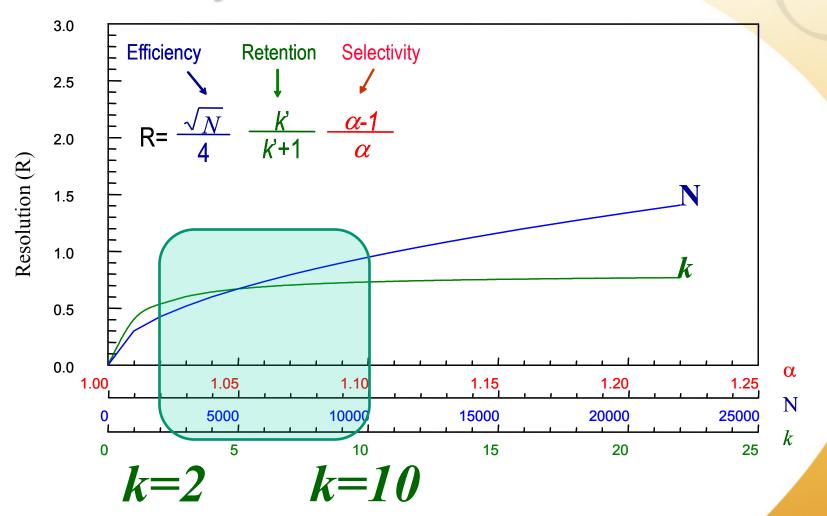


Trimethoprim

Ν


> Original Method:

- ≻5µm Fortis C18 250x4.6mm
- >A: Phosphate pH3
- ≻B: MeOH
- >70:30 → 100%B in 20min
- ≻1ml/min
- ≥280nm



250x4.6mm Original Method

Adjust k' for increased Rs

Efficiency HPLC \rightarrow UHPLC

Strength in Technology

Column Length	Efficiency of 5µm	Efficiency of 3µm	Efficiency of 2.6µm Core-shell	
250	22000			
150	12700	16800	26460	Incre <mark>ase</mark> Speed
100	8300	10700	21000	Save
50	4000	6000	11200	Solvent
30		3200	7000	8 fold
20			3000	

Moving from a 250mm 5µm column to a 150mm 3µm will provide the same efficiency

Therefore equivalent Separating Power

Calculations

Strength in Technology

>3 Critical Equations

> Alter Flow Rate – In line with i.d. change

> Alter Gradient time

Calculate dwell volume

Calculations

Alter Flow Rate

Alter Gradient time

$$F_2 = F_1 \times (dc_2^2)$$

 (dc_1^2)

 $t_{g2} = t_{g1} \times V_{m2} \times F_1$

 $V_{m1} \times F_2$

Strength in Technology

 $F = \text{flow rate (ml/min} \\ \text{dc} = \text{column diameter (mm)} \\ 1 = \text{Original column parameter} \\ 2 = \text{New column parameter} \\ T_g = \text{gradient time (min)} \\ \text{Vm} = \text{interstitial column of column} \\ \end{cases}$

Calculations

Strength in Technology

Interstitial volume

$V_m = \pi \mathbf{x} \mathbf{r}^2 \mathbf{x} \mathbf{L} \mathbf{x} \mathbf{w}$

Vm = interstitial column of column r = column radius (mm) L = column length (mm) W = column % interstital porosity

Approximation

W for fully porous material = 68% = 0.68*W* for core-shell material = 55% = 0.55

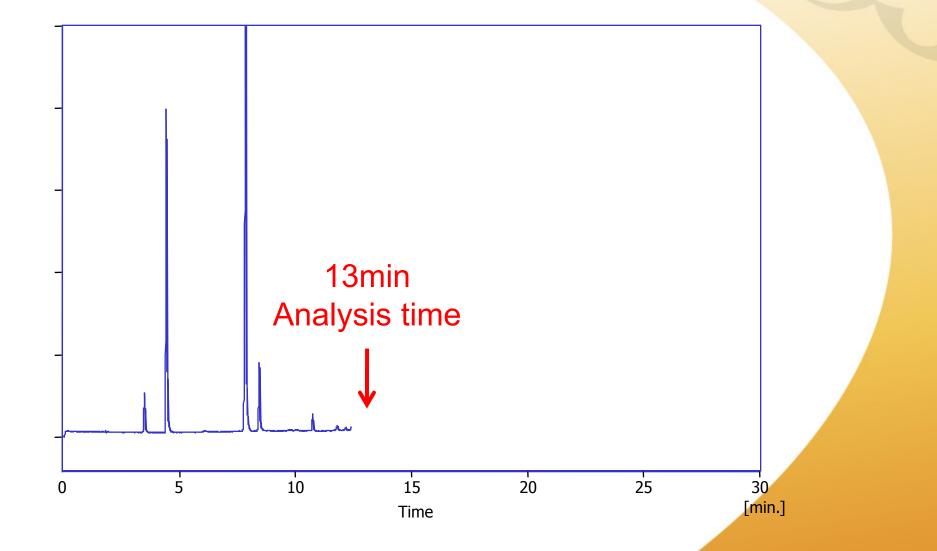
^{1st} Change ^{Strength in Technology} 250x4.6mm 5µ to 150x4.6mm 3µ

Alter Flow Rate

Alter Gradient time

N/a as both 4.6mm i.d. columns $t_{g2} = t_{g1} \times V_{m2} \times F_1$

 $V_{m1} \times F_2$


$$t_{g2} = 20 \times 1695 \times 1.0$$

2825 x 1.0

 $t_{g2} = 12min$

150x4.6mm First Method Change

Efficiency HPLC \rightarrow UHPLC

Strength in Technology

Column Length	Efficiency of 5µm	Efficiency of 3µm	Efficiency of 2.6µm Core-shell	
250	22000			
150	12700	16800	26460	Incre <mark>ase</mark> Speed
100	8300	10700	21000	Save
50	4000	6000	11200	Solvent
30		3200	7000	8 fold
20			3000	

Moving from a 150mm 3µm column to a 100mm 2.6µm will provide the same efficiency

Therefore equivalent Separating Power

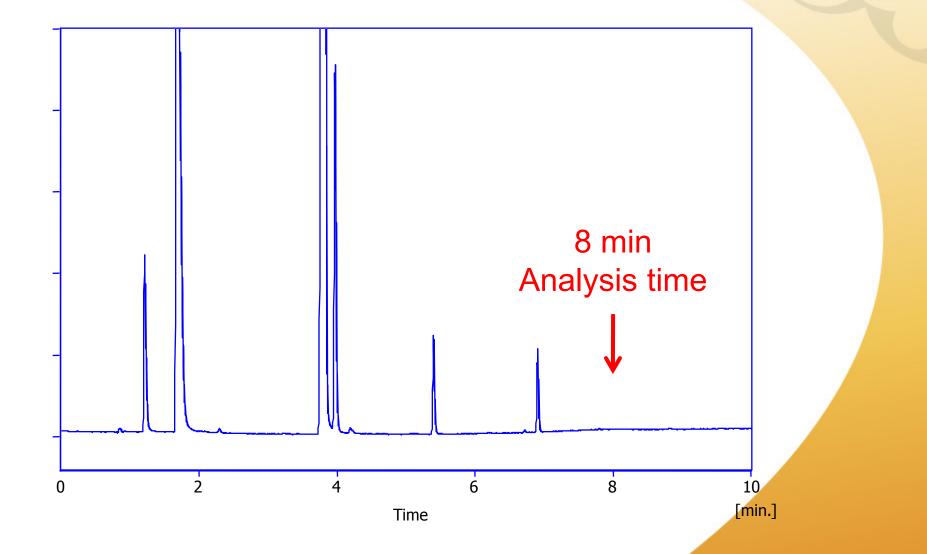
^{150x4.6mm to 100x4.6mm SpeedCore}

Alter Flow Rate

Alter Gradient time

N/a as both 4.6mm i.d. columns $t_{g2} = t_{g1} \times V_{m2} \times F_1$

 $V_{m1} \times F_2$


$$t_{g2} = 20 \times 914 \times 1.0$$

2825 x 1.0

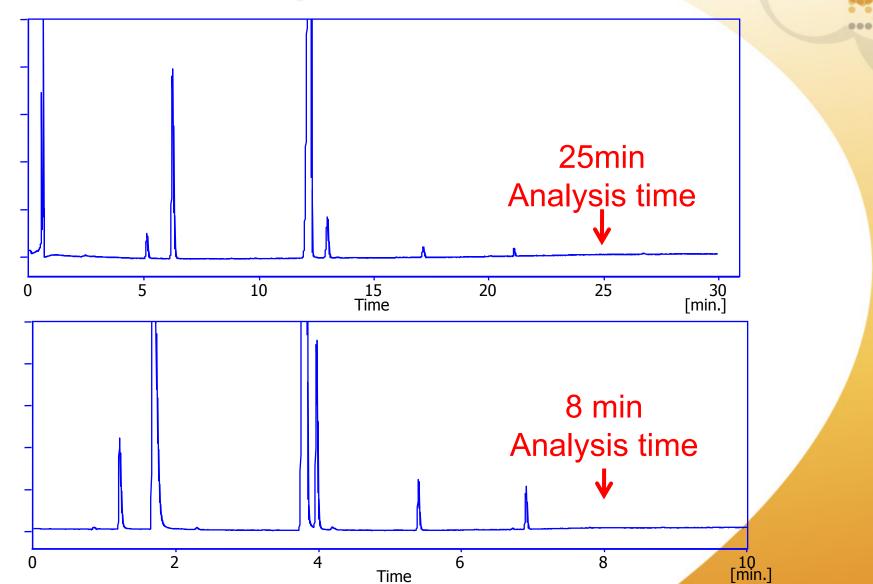
 $t_{g2} = 6.5 min$

100x4.6mm SpeedCore Change

Calculator

SpeedCore Core-Shell Meth

Method Transfer Calculator


Adjust Column Leng	
Existing Column length	250 mm
Existing Particle Size	5 µm
Existing Column Diameter	4.6 mm
Adjust injection Volu	Ime
Existing Injection Volume	20 µl
Adjust Flow Rate Existing flow rate	1.00 ml/m
Existing now race	
Adjust Gradient Prog	ji am
Adjust Gradient Prog Existing Gradient Time	20 min
Existing Gradient Time	
Existing Gradient Time Backpressure	20 min
Existing Gradient Time Backpressure	20 min
Existing Gradient Time Backpressure	20 min
Existing Gradient Time Backpressure	20 min 105 bar

New Column Length 100 mт New Particle Size 2.6 μm New Column diameter 4.6 mm 8.00 µl New injection volume 1.00 ml/min New flow rate 6.5 New Gradient Time min If higher flow rate is required 1.50 ml/min then please enter here 4.3 min New Gradient Time will be 155 New Backpressure @ 1.0ml/mir bar 186 New Backpressure @ 1.2ml/mir bar New Backpressure @ 1.5ml/mir 233 bar. 12 ml New Solvent Usage

Saving in Time (%) 67.65 % Saving in Solvent (% 38 %

Final optimised method

Allowable Changes

Strength in Technology

Type of Change **USP Adjustment EP Adjustment** Column Length $\pm 70\%$ $\pm 70\%$ Column i.d. $\pm 25\%$ $\pm 25\%$ Particle size - 50% - 50% **Column Temperature** $\pm 10\%$ $\pm 10\%$ Flow rate $\pm 50\%$ $\pm 50\%$ Mobile phase pH ± 0.2 units ± 0.2 units Concentration of buffer $\pm 10\%$ $\pm 10\%$ \pm 30% of the minor Ratio of components in \pm 30% of the minor component, mobile phase but a change in any component component, or 2% absolute of cannot exceed ± 10% absolute that component, whichever is greater **Injection Volume** Reduced as far as consistent with Increased by as much as twice the volume specified, accepted precision and detection providing no adverse effects limits

Strength in Technology

Moving to a Core-shell particle is simple as long as 3 equations are adhered to:

- Change Flow rateAlter gradient time
- Calculate dwell volume

Conclusion

Strength in Technology

Moving to Speedcore particles provides gains in:

- ≻Time
- Sensitivity
- Resolution
- Less solvent usage